Directed self-assembly of inorganic nanoparticles at air/liquid interfaces.
نویسندگان
چکیده
Inorganic nanoparticles (NPs) appear as the forefront functional structure in nanotechnology. The preparation of functional materials based on inorganic NPs requires their assembly onto well-defined structures. Within this context, self-assembly at air-liquid interfaces is probably the best candidate for a universal procedure for active materials composed of assembled NPs. The detailed in situ mechanism of the lateral self-assembly and vertical organization of NPs at air-liquid interfaces is still unknown despite its extended use. The most common and promising methods for addressing this open issue are reviewed herein. The self-assembled films can be used in situ or further be transferred to solid substrates as the main constituents of novel functional materials. Plasmonic NPs at interfaces are highly interesting, given the broad range of applications of the plasmonic field, and will be discussed more in detail.
منابع مشابه
Towards a universal molecular sensor: Self-assembled nanoparticle arrays for multi-phase trace analyte detection
Nanoplasmonic structures designed for trace analyte detection by surface enhanced Raman spectroscopy typically require sophisticated nanofabrication techniques. An alternative to fabricating such arrays is to rely on self-assembly of nanoparticles at liquid-liquid or liquid-air interfaces into close-packed arrays. The density of the arrays can be fine tuned by modifying the nanoparticle functio...
متن کاملSelf-assembly and cross-linking of FePt nanoparticles at planar and colloidal liquid-liquid interfaces.
Terpyridine thiol functionalized FePt and Au NPs were self-assembled and cross-linked at the liquid-liquid interfaces using Fe(II) metal ion. Complexation of terpyridine with Fe(II) metal ion leads to NP network and affords stable membranes and colloidal shells at the liquid-liquid interfaces.
متن کاملNanoparticle assembly and transport at liquid-liquid interfaces.
The self-assembly of particles at fluid interfaces, driven by the reduction in interfacial energy, is well established. However, for nanoscopic particles, thermal fluctuations compete with interfacial energy and give rise to a particle-size-dependent self-assembly. Ligand-stabilized nanoparticles assembled into three-dimensional constructs at fluid-fluid interfaces, where the properties unique ...
متن کاملSelf-assembled nanoparticle arrays for multiphase trace analyte detection.
Nanoplasmonic structures designed for trace analyte detection using surface-enhanced Raman spectroscopy typically require sophisticated nanofabrication techniques. An alternative to fabricating such substrates is to rely on self-assembly of nanoparticles into close-packed arrays at liquid/liquid or liquid/air interfaces. The density of the arrays can be controlled by modifying the nanoparticle ...
متن کاملInfluences of surfactant and nanoparticle assembly on effective interfacial tensions.
We have studied assembly at air-water and liquid-liquid interfaces with an emphasis on systems containing both surfactants and nanoparticles. Anionic surfactants, sodium dodecyl sulfate (SDS) and non-ionic surfactants, Triton X-100 and tetraethylene glycol alkyl ethers (C(8)E(4), C(12)E(4) and C(14)E(4)), effectively decrease the surface tension of air-water interfaces. The inclusion of negativ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 8 37 شماره
صفحات -
تاریخ انتشار 2016